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The SSPX spheromak experiment has achieved electron temperatures of 

350eV and confinement consistent with closed magnetic surfaces. In addition, there is 

evidence that the experiment may be up against an operational beta limit for Ohmic 

heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam 

(NB) sources to the experiment. A question is whether the limit is due to instability. 

Since the deposited Ohmic power in the core is relatively small the additional power 

from the beams is sufficient to significantly increase the electron temperature. Here 

we present results of computations that will support this contention. We have 

developed a new NB module to calculate the orbits of the injected fast-ions. The 

previous computation made heavy use of tokamak ordering which fails for a tight-

aspect-ratio device, where Btor ∼Bpol.  

The model calculates the deposition from the NFREYA package [1]. The 

neutral from the CX deposition is assumed to be ionized in place, a high-density 

approximation. The fast ions are then assumed to fill a constant angular momentum 

orbit. And finally, the fast ions immediately assume the form of a dragged down 

distribution. Transfer rates are then calculated from this distribution function [2]. The 

differential times are computed from the orbit times and the particle weights in each 

flux zone (the sampling bin) are proportional to the time spent in the zone. From this 

information the flux-surface-averaged profiles are obtained and fed into the 

appropriate transport equation. This procedure is clearly approximate, but accurate 

enough to help guide experiments. A major advantage is speed: 5000 particles can be 

processed in under 4s on our fastest LINUX box. This speed adds flexibility by 

enabling a “large” number of predictive studies. Similar approximations, without the 

accurate orbit calculation presented here, had some success comparing with 

experiment and TRANSP [3]. Since our procedure does not have multiple CX and 

relies on disparate time scales, more detailed understanding requires a “complete” NB 

package such as the NUBEAM [4] module, which follows injected fast ions along 

with their generations until they enter the main thermal distribution. 
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 To compute the orbits we use a rectangular grid in (ψ,θ), the flux coordinates. 

An injected particle is born inside of a box in this space and exits through a side. We 

only consider boxes with two crossings for a given angular momentum. At the 

extrema of the orbits, there might be four crossings; these are clearly ignored. The 

coordinates of all crossings back to the birth box are stored. To determine the 

crossings we use (ψ-ψangM)2-(v|| Fmc/eB)2 = 0 rather than the angular momentum 

since it is well defined for v||
2 < 0. Here v||

2 = 2(E-µB)/m; in this drift approximation µ 

is a constant of the motion. Note that this form has spurious solutions but by 

following from box to box they are avoided. Differential times are then computed 

from either 

! 

d" / ˙ "  or 

! 

d" / ˙ " . The 

cumulative time in a “flux zone” 

determines the relative weights. 

Where dψ∼0 and 

! 

˙ " ∼0, we use 

! 

d" / ˙ "  and conversely. In tight-

aspect-ratio configurations such 

as spheromaks and spherical 

tokamaks the orbits can be 

rather exotic, since Bpol∼Btor..  

To the left we show typical fast-

ion orbits (25 KeV normal 

injection) for SSPX.  The red 

curves show a passing orbit, the 

green curves show a trapped orbit and the blue curves show a “potato” orbit.  

Next shown are the beam coverage for normal and tangential injection. The 

dashed curve shows the plasma boundary. Directly below we show the deposition and 

sample orbits footprints for normal and tangential injection. The performance of 



neutral beam injection is determined for three equilibrium targets; on-axis Te =360ev, 

Te =225ev and Te =150ev. The target equilibria are determined from CORSICA [5] 

reconstructions constrained by probe magnetic data and λgun. The electron χe is 

determined from power balance for each shot. There is no experimental information 

about Ti and χi. For the present, χi is chosen to keep Te ~Ti. Similarly, Ohm’s law is 

not evolved; rather, the q-profile from the reconstruction and the toroidal current are 

held fixed. Otherwise in the fixed boundary analysis used, the q-profile would rapidly 

depart from its reconstructed value. To properly model core flux diffusion requires a 

free-boundary analysis with current on the open field lines and hyper-resistivity to fix 

the value of λ=µ0 J||/B at the spheromak edge to its reconstructed value. Such analyses 

have been used to model time dependent experimental runs producing q-profiles in 

good agreement with the reconstructed values [6]. 

Next, selected results are shown for 1.5 MW of injected power. First we 

consider evolution of the on-axis temperature and power deposition.  We see that 

provided the good-target duration is of order several ms there can be significant 

heating. Specifically, as we show in the time evolution plots, the two higher starting 

electron temperatures show an increase of order 30 to 50%. At the lowest starting 

temperature the increase is 

minimal. Perhaps more 

important is the increase in 

plasma pressure due to both 

the temperature rise and the 

substantial beam pressure. In 

the next figure we show 

profile plots of the total and component pressures at steady state along with the 

profiles of the initial total pressures. Also shown are profiles of the power density 

deposition from the NB’s as well as the Ohmic power density deposition. We see that 

in the plasma core the beam deposition dominates.In the SSPX experiment it is found 

that in the high temperature discharges (Te >200ev) the q-profile avoids the n=2, m=2 

and n=3, m=2 resonance in the core.  This q-profile information comes from 

CORSICA reconstruction of the equilibrium. With tangential injection the NB current 

density is of order 20% of the total, thus opening the possibility of modifying the q-

profile. The figure below shows this and selected results from tangential injection. 



The impact of NB injection is summarized with the following statements. The 

NB power in the core exceeds 

the Ohmic power. The beam 

is capable of providing a 

significant increase in the 

electron temperature if the 

target duration is of order 

2ms. With the increased 

pressure, the experiment can 

test the operational beta limit  

so far observed. Tangential 

injection suggests that 

significant current drive is 

possible. And finally, an 

important question is 

whether the observed 

magnetic fluctuations will 

induce fast ion losses that 

seriously degrade the beam 

deposition rate. 
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